Abstract: Static geosensor networks are comprised of stations with sensor devices providing data relevant for monitoring environmental phenomena in their geographic perimeter. Although early warning systems for disaster management rely on data retrieved from these networks, some limitations exist, largely in terms of insufficient coverage and low density. Crowdsourcing user-generated data is emerging as a working methodology for retrieving real-time data in disaster situations, reducing the aforementioned limitations, and augmenting with real-time data generated voluntarily by nearby citizens. This paper explores the use of crowdsourced user-generated sensor weather data from mobile devices for the creation of a unified and densified geosensor network. Different scenario experiments are adapted, in which weather data are collected using smartphone sensors, integrated with the development of a stabilization algorithm, for determining the user-generated weather data reliability and usability. Showcasing this methodology on a large data volume, a spatiotemporal algorithm was developed for filtering on-line user-generated weather data retrieved from WeatherSignal, and used for simulation and assessment of densifying the static geosensor weather network of Israel. Geostatistical results obtained proved that, although user-generated weather data show small discrepancies when compared to authoritative data, with considerations they can be used alongside authoritative data, producing a densified and augmented weather map that is detailed and continuous.

Source: IJGI | Free Full-Text | Crowdsourcing User-Generated Mobile Sensor Weather Data for Densifying Static Geosensor Networks | HTML